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Abstract
We carry out the extension of the covariant Ostrogradski method to fermionic
field theories. Higher derivative Lagrangians reduce to second-order
differential ones with one explicit independent field for each degree of freedom.

PACS numbers: 04.62.+v, 11.10.−z

1. Introduction

Higher derivative (HD) field theories appear in many physical situations such as the Higgs
model regularizations [1] or generalized electrodynamics [2–4], but their main interest lies
in their use as gravitational actions. HD gravitational field models arise as effective low
energy theories of the string [5] or are induced by quantum fields in a curved background
[6]. Theories with quadratic curvature terms have been studied closely because they are
renormalizable [7] in four dimensions. This property led to renormalization-group analyses in
[8], which culminate in [9], including attempts to avoid the appearance of Weyl ghosts usually
occurring in HD theories [10]. For these reasons, it is in the gravitational framework where
essential progress has taken place. In particular, during the 1980s a mechanism was devised
to deal with the Hamiltonian formulation of an arbitrary HD gauge field theory which was
successfully applied to HD gravity [11]. Somewhat later, in the 1990s, a covariant differential
order reduction for HD field theories was found [12]. These kinds of covariant techniques
were used in the late 1990s to identify the propagating degrees of freedom (DOF) in both
diff-invariant [13] and gauge-fixed HD gravity [14]. Moreover, some effort has been devoted
to study general bosonic HD free theories [15, 16] as useful testbeds for HD gravity.

HD fermionic field theories have also been considered in the literature1, for example, in
the context of the effective action for the trace anomaly in conformal field theory [17], as a
dynamical mechanism for fermionic mass generation and in the frame of Faddeev–Popov2

1 Fermionic theories in which the field equations are differential equations of order greater than one are referred to
as HD fermionic theories.
2 Although the Faddeev–Popov compensating fields for HD gravity are not fermionic fields (their spins are 0 or 1)
they are anticommuting fields. In this sense, they are different from the usual bosonic fields treated in [15, 16].
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compensating Lagrangian for HD gravity [14]. Therefore, it would be very useful to generalize
all the work done in the bosonic case to cover the presence of fermionic fields. This is one of
the goals of the present paper; another is to provide a general framework for the differential
order reduction methods developed for HD theories in [12] and treated in [13–15]. The
starting point in the study of any field theory, including HD field theory, is the characterization
of the propagating DOF. There are several ways to do this. The first, and standard, way
follows a detailed analysis of the Ostrogradski phase space [15, 18] in order to characterize the
reduced phase space [19], i.e. the subspace of the phase space where the physical DOF reside.
However, when the theory is linear there exists a second and highly useful shortcut provided
by the use of the covariant symplectic techniques of Witten and Crnković [20, 21]. The
idea of these methods relies on the construction, directly through the action, of a symplectic
form on the space of solutions to the field equations (covariant phase space) and uses it to
generate conserved quantities (energy, angular momentum and so on) that characterize the
propagating DOF. The covariant symplectic techniques have proved to be an essential tool in
the classification of free theories and also in the identification of the propagating DOF [22].
We will see that they also allow us to complete, with all generality, the order reduction in HD
theories.

When we are dealing with HD relativistic field theories, the story does not end once the
DOF have been identified. The reason is that HD theories can be usually reinterpreted in
terms of lower derivative (LD) theories that propagate (in the free limit) according to standard
Lagrangians. The machinery necessary for this reinterpretation combines the use of the
covariant Legendre transform [12] and a subsequent diagonalization in the fields [13]. This
procedure has been developed in various examples: diff-invariant HD gravity [13], gauge fixed
HD electromagnetism [4], gauge-fixed gravity [14] and HD scalars [15]. However, there are
at least two issues left aside in these works. The first issue is the extension of the above results
to fermions, covering the general derivative case3. The second and more interesting issue is
to find a unifying point of view that encompasses all the previous works. The motivation of
the present paper is to clarify these two points.

The paper is organized as follows. After this introduction, section 2 is devoted to reviewing
the use of the covariant symplectic techniques for Dirac fields and to fix some conventions.
Section 3 deals with a simple HD fermionic field theory in order to make it simpler to
understand the general N-derivative fermionic theory—under the hypothesis of non-degenerate
masses—treated in section 4. We end the paper with several comments and our conclusions
(section 5). Some details of the computations and the general conventions are left to appendices
A and B. Finally, appendix C indicates how the differential order reduction method proposed
in section 4 can be extended to cover a wide class of HD field theories.

2. A review of the Dirac Lagrangian

Let us start with a quick review of the standard Dirac Lagrangian in order to fix conventions
and notations. As is well known, the free propagation of spin 1/2 and mass m modes can be
described through the Dirac Lagrangian LDm , which can be written in two equivalent forms

LDm =
1

2
[ψ(i
−→
/∂ −m)ψ − ψ(i←−/∂ +m)ψ] = ψ(i−→/∂ −m)ψ − ∂µ

(
ψ iγ µψ

2

)

3 Within the frame of HD scalar theories and covariant Legendre transform, [15] fails to cover the diagonalization of
the general derivative situation. The problem has been solved in [16] avoiding the covariant Legendre transform by
using Lagrange multipliers and symplectic covariant techniques.
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where m is a mass parameter, ψ is a Dirac spinor, /∂ := γ µ∂µ, γ
µ are the Dirac matrices,

ψ := ψ†γ 0, and † denotes complex conjugation and transposition (see appendix A for a resumé
of the conventions). The first and more symmetric expression is appropriate for analytical
purposes and will be used in the following sections when we introduce the differential reduction
order methods. The second is suitable to define the propagator. The Euler–Lagrange equations
associated with the Dirac Lagrangian are

(i/∂ −m)ψ = 0 (1)

and the oriented ψ–ψ fermionic propagator is

�D
m := 1

i/∂ −m = −
i/∂ +m

� +m2
.

The dynamics is governed by the field equations (1) that define the Dirac covariant phase
space SDm . To parametrize SDm we solve the field equations using spatial Fourier transform and
the notation introduced in appendix A. It is straightforward [23] to prove that ψ ∈ SDm if and
only if

ψ(t, �x) =
∑
α=1,2

∫
R3

d3�k
(2π)3

m

k0
[aα(k)uα(k) e−ikx + bα(k)vα(k) eikx] (2)

where uα(k), vα(k) are basic spinors, kx := k0t − �k · �x, k0 :=
√�k2 +m2, and the functional

parameters that distinguish one solution from another are encoded on the aα(k) and bα(k)
fields.

Let us show how the symplectic covariant techniques [20] induce a symplectic form �Dm
in the space SDm . First define the 2-form

�D =
∫
�

ω
µ

D dσµ

where dσµ is the measure on a space-like hypersurface�,

ω
µ

D := dI
∂LDm
∂ψµ
∧∧dIψ − dIψ ∧∧dI

∂LDm
∂ψµ

= idIψ ∧∧γ µdIψ

and dI,∧∧ are, respectively, the exterior derivative and the wedge product in the linear manifold
SDm .

The density ωµD is divergence-free when restricted to SDm , in other words ∂µω
µ

D = 0
modulo field equations. Then the restriction�Dm of�D on SDm is a well-defined 2-form on this
functional space, i.e. it is time-independent, and in parametrization (2) can be written as4

�Dm = i
∑
α=1,2

∫
R

3

d3�k
(2π)3

m

k0
[dIaα∗(�k) ∧∧dIaα(�k) + dIbα(�k) ∧∧dIbα∗(�k)]. (3)

The symplectic form (3) determines the propagating DOF of the Dirac theory—the canonical
pairs aα∗(�k)–aα(�k) and bα∗(�k)–bα(�k)— and can also be used to derive constants of motion
if one considers the following version of the Noether theorem. When the symplectic form
� is invariant under a group of transformations and we take a vector V tangent to an orbit
of this group, it is straightforward to prove [21] that locally iV� = dIH , where iV� denotes
the contraction of V and �. The quantity H is the generator of the symmetry transformation
corresponding to V . If the action is Poincaré invariant we obtain in this way the energy–
momentum and the angular momentum densities (with the right symmetries in their tensor
4 z∗ denotes the complex conjugate of z.
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indices) by computing iV� for vectors V describing translations and Lorentz transformations
and writing the result as dIH . Noting that under a translation of parameter τµ we have
iVT dIaα(�k) = iτµkµaα(�k) and iVT dIbα(�k) = iτµkµbα(�k), the energy of a solution is given by

HD
m =

∑
α=1,2

∫
R3

d3�k
(2π)3

m

k0
k0[aα∗(�k)aα(�k)− bα(�k)bα∗(�k)].

It is worthwhile pointing out that the minus sign between the a and the b fields forces us to
take them as anti-commuting variables to ensure the positivity of the energy.

3. A simple HD fermionic theory

Once we feel comfortable with the notation, let us consider the following simple HD fermionic
Lagrangian:

L(2)m1m2
= ψ(i−→/∂ −m1)(i

−→
/∂ −m2)ψ

with real mass parameters5m1<m2. It is straightforward to write down the HD field equations
for this model,

(i/∂ −m1)(i/∂ −m2)ψ = 0 (4)

whose space of solutions, S(2)m1m2
, can be parametrized in terms of a sum of Dirac fields in

the form

ψ = ψ1 + ψ2 (5)

where (i/∂ −ml)ψl = 0, for l = 1, 2. Explicitly, in the notation given in section 2,

ψl(t, �x) =
∑
α=1,2

∫
R3

d3�k
(2π)3

ml

k0
l

[
aαl (k)u

α
l (k) e−iklx + bαl (k)v

α
l (k) eiklx

]
(6)

where, as in the previous section, uαl (k), v
α
l (k) are basic spinors defined in appendix A, klx =

k0
l t − �k · �x, k0

l :=
√
�k2 +m2

l , and the parameters that distinguish one solution from another are
encoded on the aαl (k) and bαl (k) fields. Also the HD propagator can be easily found as a sum
of Dirac propagators

�(2)
m1m2
= 1

(i/∂ −m1)(i/∂ −m2)
= 1

m2 −m1

(
�D
m2
−�D

m1

)
.

The physical interpretation is clear. The theory describes two LD fermionic DOF, a physical
one (positive contribution to the energy) with massm2 and a Weyl ghost (negative contribution
to the energy) with mass m1.

We can learn more about this theory by looking at it through the glass provided by the
covariant symplectic techniques. The extension of the covariant symplectic techniques to the
HD field theories was made in [24]. Following [24] the HD Lagrangian has an associated
2-form

�(2) =
∫
�

ω
µ

(2) dσµ

where

ω
µ

(2) := dI

(
∂L(2)m1m2

∂ψµ
− ∂ν

∂L(2)m1m2

∂ψµν

)
∧∧dIψ + dI

∂L(2)m1m2

∂ψµν
∧∧dIψν

= −i(m1 +m2)dIψ ∧∧γ µdIψ + (∂µdIψ) ∧∧dIψ − dIψ ∧∧∂µdIψ.
5 The problems associated with the presence of degenerate and/or complex ‘masses’ are detailed in [16].
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It is easy to show that ωµ(2) is real and, modulo field equations, ∂µω
µ

(2) = 0. Then we can
compute the symplectic form, �(2)m1m2

, over the space of propagating DOF, S(2)m1m2
, making use

of the parametrization given by equations (5)–(6). This leads to a well-defined 2-form on
S(2)m1m2

, namely

�(2)m1m2
= (m2 −m1)

(
�Dm2
−�Dm1

)
and Noether’s theorem gives us the energy

H(2)
m1m2
= (m2 −m1)

(
HD
m2
−HD

m1

)
.

This supports the intuitive interpretation of L(2)m1m2
given by the propagator decomposition

as a theory describing two Dirac fields. In fact, the symplectic form confirms that this is
the right interpretation and also, through the Noether theorem, that the field ψ1 is a Weyl
ghost. It contributes to the energy with a wrong sign, destroying the semi-boundedness of the
Hamiltonian and consequently the unitarity of the quantum formulation of the theory.

Finally, let us show how it is possible to find a covariant Legendre transform connecting
the HD theory with an LD theory where the usual Dirac fields are explicit. To this end, we
define the first-order differential operator D := i/∂ that satisfies

∫
R4 ψ1(Dψ2) =

∫
R4 (Dψ1)ψ2,

and rewrite the Lagrangian in terms of this object, namely, modulo total derivatives,

L(2)m1m2
(ψ,ψ,Dψ,Dψ) := DψDψ − m1 +m2

2
(Dψψ + ψDψ) +m1m2ψψ.

Then we introduce a generalized Legendre transform [12] with respect to the momenta
generated by the D-operator6,

π := ∂L(2)m1m2

∂Dψ
= Dψ − m1 +m2

2
ψ π := ∂L(2)m1m2

∂Dψ
= Dψ − m1 +m2

2
ψ. (7)

This transformation is not singular and it permits the inversion of the derivative of ψ as a
functionDψ = ν(π,ψ) given by

ν(π,ψ) := π +
m1 +m2

2
ψ ν(π,ψ) := π +

m1 +m2

2
ψ.

The Legendre transform (7) has an associated Hamiltonian

H(2)
m1m2

(ψ,ψ, π, π) := πν(π,ψ) + ν(π,ψ)π − L(2)m1m2
(ψ,ψ, ν(π,ψ), ν(π,ψ))

= ππ +
m1 +m2

2
(ψπ + πψ) +

(
m1 −m2

2

)2

ψψ

and the HD dynamics (4) can be described now by means of the Euler–Lagrange equations
derived from the Helmholtz LD Lagrangian

L(2)H (ψ,ψ, π, π;Dψ,Dψ) := πDψ + Dψπ −H(2)
m1m2

(ψ,ψ, π, π).

AlthoughL(2)H is an LD Lagrangian classically equivalent toL(2)m1m2
, it does not explicitly exhibit

the propagating DOF. However, the diagonalization can be carried out taking into account the
special structure of the covariant phase space. Defining the new fields ψ1 and ψ2 in the form

ψ =: ψ1 + ψ2 (8)

π =:
m1 −m2

2
(ψ1 + ψ2) (9)

6 We must treat a field and its conjugate as independent variables in the Legendre transform in order to allow the
presence of Grassmannian fields [14]. Then, the derivatives with respect to Dψ and Dψ are respectively left and
right derivatives.
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the Helmholtz Lagrangian decouples the propagating modes,

L(2)H = (m2 −m1)
(LDm2
− LDm1

)
.

The relative minus sign shows the presence of a Weyl ghost.
The diagonalization (8)–(9) can be found by means of a very natural reasoning. Over the

solution space, where the DOF reside, we can writeψ = ψ1 +ψ2 with (i/∂−ml)ψl = 0. Then,
on this space

ψ = ψ1 + ψ2 π = Dψ − m1 +m2

2
ψ = m1 −m2

2
(ψ1 − ψ2).

The above relations, which coincide with the proposed diagonalization, indicate how the DOF
are encoded within the fields ψ and π . Moreover, the relation {ψ,π} ↔ {ψ1, ψ2} is invertible
because of the invertibility of the Legendre transform (7).

We are ready to generalize the above results, obtained in a very simple 2-derivative
framework, to the general N-derivative situation.

4. N-derivative fermionic theory

In this section, we consider the general N-derivative Lagrangian

L(N)m := ψ
N∏
l=1

(i
−→
/∂ −ml)ψ

where (i/∂ − ml) are Dirac operators with real mass parameters ml that have been ordered
following the l-index ordering, i.e. ml < ml′ when l < l′.

The propagating DOF described byL(N)m can be read out from the algebraic decomposition
for the HD propagator�(N)

m in terms of Dirac propagators,

�(N)
m := 1∏N

l=1(i/∂ −ml)
=

N∑
l=1

�D
ml∏N

l′ 	=l (ml −ml′)
.

Note that the sign alternates in the coefficients
∏N
l′ 	=l (ml − ml′), so the occurrence of Weyl

ghosts is expected. Mathematically, the propagating DOF are points in the space of solutions
to the field equations that we refer to in the following as S(N)m . The covariant phase space S(N)m

is defined by the Euler–Lagrange equations,

N∏
l=1

(i/∂ −ml)ψ = 0.

These equations can be solved by means of a linear combination of Dirac fields in the form

ψ =
N∑
l=1

ψl

where

(i/∂ −ml)ψl = 0. (10)

As in previous sections, the standard parametrization for theψl fields satisfying equation (10),
which provides us with an explicit parametrization of S(N)m , is

ψl(t, �x) =
∑
α=1,2

∫
R3

d3�k
(2π)3

ml

k0
l

[
aαl (k)u

α
l (k) e−iklx + bαl (k)v

α
l (k) eiklx

]
. (11)
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The decomposition of the HD propagator as a sum of Dirac propagators, with alternating
sign coefficients, and the decomposition of the space of solutions as a direct sum of Dirac
spaces indicate that the theory represents the propagation of N-Dirac fields, some of them
physical and some of them Weyl ghosts. This is the case, and it is possible to give a more
precise proof of this fact. The Lagrangian L(N)m induces a symplectic form in the space of
spinor fields by means of

�(N) =
∫
�

ω
µ

(N) dσµ

where

ω
µ

(N) := dI

(
∂L(N)m

∂ψµ
− ∂µ1

∂L(N)m

∂ψµµ1

+ · · · + (−1)N−1∂µ1 · · · ∂µN−1

∂L(N)m

∂ψµµ1···µN−1

)
∧∧dIψ

+ dI

(
∂L(N)m

∂ψµν1

− ∂µ1

∂L(N)m

∂ψµν1µ1

+ · · · + (−1)N−2∂µ1 · · · ∂µN−2

∂L(N)m

∂ψµν1µ1···µN−2

)
∧∧dIψν1

+ · · · + dI
∂L(N)m

∂ψµν1 ···νN−1

∧∧dIψν1···νN−1 . (12)

This is so because over the S(N)m space the 2-form density ωµ(N) satisfies ∂µω
µ

(N) = 0. Hence,

the restriction of �(N) to S(N)m —that we refer to as �(N)m —is a well-defined 2-form on this
functional space, i.e. it is time-independent. In fact, it is straightforward, but highly tedious
(see appendix B), to compute this restriction in the parametrization given by (10) to obtain

�(N)m =
N∑
l=1

�Dml∏N
l 	=l′(ml −ml′)

. (13)

Consequently, the DOF of the theory are a sum of Dirac DOF. Finally the energy, computed
through the Noether theorem, takes the form

H(N)
m =

N∑
l=1

HD
ml∏n

l 	=l′(ml −ml′)
.

Because the sign alternates in the coefficients
∏N
l 	=l′(ml−ml′), namely sg

(∏N
l 	=l′(ml−ml′)

) =
(−1)N+l, some of the fields are physical (positive contribution to the energy) and some are
Weyl ghosts (negative contribution to the energy).

Once we have identified the propagating DOF—and due to the special form of the
propagator, the covariant phase space, the symplectic form and energy that can be obtained as
linear combinations of Dirac objects—it is plausible to presume the existence of a mapping
that transforms the original HD theory into a sum of LD Dirac theories. To this end, as we did
in section 3, it is convenient to follow a series of preliminary steps. First, define the differential
operator D := i/∂ and then expand the differential kernel

∏N
l=1(D−ml) appearing in L(N)m in

the form
N∏
l=1

(D−ml) ≡
N∑
l=0

clD
N−l

where

c0 := 1 cl := (−1)l
∑

a1<···<al
ma1 · · ·mal l = 1, . . . , N.

A last technical remark is still in order. The heavy algebra involved in the following forces
us to treat the N odd and N even cases separately. We work out in detail the N = 2n case
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and refer to the bosonic framework considered in [15, 25] to understand certain peculiarities
present for N = 2n− 1.7

Modulo total derivatives, the HD Lagrangian L(2n)m can be rewritten in a more convenient
form

L(2n) =
n∑
l=0

c2lDn−lψDn−lψ +
n∑
l=1

c2l−1

2
[Dn−lψDn+1−lψ + Dn+1−lψDn−lψ].

This expression suggests the introduction of the Ostrogradski-like variables

χr := Dr−1ψ χr := Dr−1ψ r = 1, . . . , n (14)

and their corresponding momenta by means of a covariant Legendre transform

πn := ∂L
∂Dnψ

= Dχn +
c1

2
χn πn := ∂L

∂Dnψ
= Dχn +

c1

2
χn.

πr := ∂L
∂Drψ

+ Dπr+1 πr := ∂L
∂Drψ

+ Dπr+1 r = 1, . . . , n− 1.
(15)

It is easy to show that this Legendre transform is non-singular due to the invertibility of the
highest derivativesDχn andDχn in terms of the variables χ and π , namely

νn(χ, π) := Dχn = πn − c1

2
χn νn(χ, π) := Dχn = πn − c1

2
χn.

Thus it is possible to find an expression for the Lagrangian in terms of these new variables,

L(2n)m = πnπn − c1

2
χnχn +

n−1∑
r=0

c2rχn−rχn−r +
n−2∑
r=0

c2r−1

2
[χn−rχn−1−r + χn−1−rχn−r ].

The Ostrogradski-like Hamiltonian associated with the Legendre transform is

H(2n)
m := πnνn(χ, π) + νn(χ, π)πn +

n−1∑
r=1

πrχr+1

+
n−1∑
r=1

χr+1πr − L(N)m (χ, χ ; νn(χ, π), νn(χ, π))

= πnπn − c1

2
[πnχn + χnπn] +

c2
1

2
χnχn +

n−1∑
r=1

[πrχr+1 + χr+1πr ]

−
n−1∑
r=0

c2rχn−rχn−r −
n−2∑
r=0

c2r−1

2
[χn−rχn−1−r + χn−1−rχn−r ].

Finally, the Helmholtz Lagrangian—the LD Lagrangian, classically equivalent to L(2n)m ,
generated by the Legendre transform—is

L(2n)H :=
n∑
r=1

[
πrDχr + Dχrπr

]−H(2n)
m .

As usual in the covariant Legendre procedure [15, 16], the expression for L(2n)H does not exhibit
the propagating DOF. However, it is straightforward to find a new set of variables in terms of
7 In the N odd case, the definition of the highest momentum yields a constraint—that can be easily taken into
account—while the field derivative is worked out from the next momentum definition. Once the constraint is solved,
the odd case is exactly analogue to the even case.
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which the propagation is explicit. Specifically, it suffices to introduce the new set ofψl-fields8

through

χr :=
2n∑
l=1

mr−1
l ψl (16)

χr :=
2n∑
l=1

mr−1
l ψl (17)

πr :=
2n∑
l=1

(
2(n−r)∑
k=0

ckm
2n−r−k
l +

c2(n−r)+1

2
mr−1
l

)
ψl (18)

πr :=
2n∑
l=1

(
2(n−r)∑
k=0

ckm
2n−r−k
l +

c2(n−r)+1

2
mr−1
l

)
ψl. (19)

In these variables, and modulo total derivatives, the Helmholtz Lagrangian becomes diagonal,

L(2n)H =
2n∑
l=1

2n∏
l′ 	=l
(ml −ml′)LDml .

The key observation to find the diagonalization (16)–(19) relies on the following simple fact.
The Ostrogradski variables χr and momenta πr can be expressed by means of a one-to-one
map in terms of the original HD variable ψ and its derivatives Dkψ , namely

χr = Dr−1ψ (20)

πr =
2(n−r)∑
k=0

ckD
2n−r−kψ +

c2(n−r)+1

2
Dr−1ψ. (21)

When we restrict relations (20)–(21) to the space of solutions parametrized by (6)—that is, over
the propagating DOF space—we re-obtain the one-to-one linear relations (16)–(19) between
the variables {χr, πr} and {ψl}. This is the reason why this linear redefinition diagonalizesL2n

H .
All the preceding results can be generalized to cover a wide class of linear theories

including those considered in previous works [4, 16]. In particular, the procedure followed
here resolves the deficiencies inherent to more primitive approaches [15]. Specifically, it leads
us to the diagonalization for the N-derivative theory within the framework of the covariant
Legendre mapping. We summarize in appendix C the essential steps and requirements that
allow us, following the lines of this section, to transform an HD linear theory into an LD linear
theory where the propagating DOF are explicit.

5. Conclusions and comments

We have proved the equivalence of HD fermionic field theories and an LD counterpart where
the DOF are explicit by means of a covariant Legendre transform [12] and a subsequent
diagonalization. The previous attempts to solve this kind of problem, which considered only
scalar field theories [15], failed to find the general diagonalization to an arbitrary differential
order due to the heavy algebra involved. A way out of this was given in [16], in a more general
framework than [15]—and also dealing with bosonic field theories—but the solution proposed
8 At this point, the ψl fields are simply a new set of variables. We follow the same notation used to denote the Dirac
fields in (11). We will show that these new fields diagonalize the Helmholtz Lagrangian in terms of the Dirac fields.
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there abandons the use of the Legendre transform in favour of the Lagrange multipliers method.
The use of the covariant symplectic techniques in combination with the covariant Legendre
transform avoids the algebraic problems of [15] permitting us to find an explicit formula for
the DOF diagonalization at every differential order and to generalize the previous results to
the fermionic case.

The approach that we follow here is exportable to more general theories—classical
mechanics, HD gravity and so on—as we schematically show in appendix C. It is also
important to realize that the presence of gauge symmetries in the theory does not change the
results in any way. When dealing with HD theories written in terms of differential forms, such
as those considered in [16], the role of the D-operator (D = i/∂ in the present work) can be
simulated by an operator constructed by means of the exterior differential d and its dual δ, for
example D = δd. Even considering the possible existence of gauge symmetries (D d� = 0,
for any field �) the analogue of the Legendre mapping (14)–(15) is still non-singular and
therefore the reduction order procedure works exactly as in section 4.

Another remarkable fact is that, in spite of the fact that it is always possible to reduce
the differential order by means of a covariant Legendre mapping, the diagonalization of the
resulting LD theory in terms of a sum of standard theories is not always possible [16] (but
when possible, the method presented here allows us to find it). To fix ideas, let us return to
the fermionic case where the more general HD, Lorentz invariant, Lagrangian for a spinor ψ
without internal indices takes the form

L(n) = ψ (Dn + c1D
n−1 + · · · + cn−1D + cn

)
ψ

where ci are real parameters with the appropriate dimensions. As is well known, the polynomial
Dn + c1D

n−1 + · · · + cn−1D + cn can be factorized in terms of its roots. In section 4 we have
made the assumption that all the roots are different9. This is a necessary hypothesis in order
to succeed in the diagonalization process. However, if we consider an HD ‘mass-degenerate’
model, the diagonalization cannot be carried out. For example, starting with

L(2)mm = ψ(D −m)2ψ
the Legendre procedure presented in section 4 leads us to the LD Hemholtz Lagrangian,

L(2)H = (ψ π)

(
0 D −m

D −m −1

)(
ψ

π

)
.

The propagator associated with L(2)H is

�(ψπ) = 1

(D −m)2
(

1 D −m
D −m 0

)
.

As is clear, this propagator cannot be diagonalized by means of a linear redefinition on the
fields (ψ, π) not involving differential operators. This is so because 1/(D−m)2 is not a linear
combination of Dirac propagators, and hence it is not possible to find a c-number matrix Q
such thatQ†�(ψπ)Q becomes diagonal with Dirac propagators on its diagonal elements. The
same conclusion can be reached with an elementary analysis of the covariant phase space.

Finally, we want to point out that the diagonalization process of the LD equivalent theory,
obtained by Legendre transform, strongly relies on the decomposition of the HD solution
space as a direct sum of LD ones. This decomposition is tied to the decomposition of the HD
propagator as a sum of simpler pieces or, at least, on its relationships with simpler propagators.
Then, in order to make practical use of the differential order reductions presented in the paper,
9 We have also assumed their positivity. This is a necessary requirement if we want these parameters to be physical
masses, but it can be relaxed for diagonalization purposes.
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knowledge of the properties of the Green functions of HD differential operators is needed.
Some results in this direction can be found in [26] where, by means of heat kernel methods,
the Green functions of a wide class of second-order differential operators have been studied
and their relationship with LD counterparts is pointed out. These results are a key ingredient
if one wants to find the LD-diagonalized equivalent of such an HD theory by means of a
covariant Legendre transform.
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Appendix A. Conventions

We use the Minkowski metric ηµν = diag(+1,−1,−1,−1) to lower and raise spacetime
indices and use the Einstein convention for summation over repeated indices. The derivatives
with respect to coordinates are sometimes abbreviated as

∂µ1···µk := ∂k

∂µ1 · · · ∂µk
and � := ∂µ∂µ = ∂2

0 − �∂2 is the d’Alembertian operator.
For any Xµ1 ···µk ,X{µ1···µk} represents its index symmetrization, namely

X{µ1···µk} := 1

k!

∑
π∈�(k)

Xµπ1 ···µπk

where�(k) denotes the permutation group of k-elements.
The Dirac γ matrices satisfy

γ {µ1γ µ2} = ηµ1µ2

with γ 0 Hermitian and γ i anti-Hermitian. As usual /k := kµγ µ.
Dirac spinors uα(k) and vα(k) are a basis of solutions to the Dirac equations,

(/k −m)uα(k) = 0 (/k +m) vα(k) = 0.

They depend implicitly on the mass m and explicitly on the on-shell momentum k with

k0 :=
√�k2 +m2, and the α index that labels the polarizations. On this basis, and by making

use of the spatial Fourier transform, any spinor field can be expressed as

ψ(t, �x) =
∑
α=1,2

∫
R3

d3�k
(2π)3

m

k0
[aα(k, t)uα(k) ei�k·�x + bα(k, t)vα(k) e−i�k·�x].

The functions aα(k, t) and bα(k, t) take the special form aα(k, t) = aα(k) e−ik0t and bα(k, t) =
bα(k) eik0t when considering spinor fields that satisfy the Dirac equation (i/∂ −m)ψ = 0.

The basic spinors u and v satisfy the following normalization properties:

ūα(k)uβ(k) = δαβ v̄α(k)vβ(k) = −δαβ v̄α(k)uβ(k) = ūα(k)vβ(k) = 0.

uα†(k)uβ(k) = δαβ
√�k2 +m2

m
vα†(k)vβ(k) = δαβ

√�k2 +m2

m
.

vα†(k0,−�k)uβ(k0, �k) = uα†(k0,−�k)vβ(k0, �k) = 0

where the conjugate spinors u are defined as u := u†γ 0, and † denotes transposition and
complex conjugation.
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Appendix B. Some remarks on the computation of the symplectic form

We summarize here the main steps involved in the calculation of the symplectic form (13) of
section 4. The symplectic form is given [24] through space integration of the density

ω
µ

(N) := dI

(
∂L(N)m

∂ψµ
− ∂µ1

∂L(N)m

∂ψµµ1

+ · · · + (−1)N−1∂µ1 · · · ∂µN−1

∂L(N)m

∂ψµµ1···µN−1

)
∧∧dIψ

+ dI

(
∂L(N)m

∂ψµν1

− ∂µ1

∂L(N)m

∂ψµν1µ1

+ · · · + (−1)N−2∂µ1 · · · ∂µN−2

∂L(N)m

∂ψµν1µ1···µN−2

)
∧∧dIψν1

+ · · · + dI
∂L(N)m

∂ψµν1 ···νN−1

∧∧dIψν1···νN−1 .

In order to compute the derivatives of the Lagrangian that appear in the definition of ωµ(N) it is
convenient to rewrite

L(N)m

(
ψ,ψµ1 , . . . , ψµ1 ···µN

)
:= ψ

N∏
l=1

(i/∂ −ml)ψ =
N∑
k=0

cN−k ikψ/∂kψ

where the constants ck are defined in terms of mass products

c0 := 1 ck := (−1)k
∑

a1<···<ak
ma1 · · ·mak .

Thus, in this notation,

∂L(N)m

∂ψµ1···µk
= cN−kikψγ {µ1 · · · γ µk} (B1)

where the symmetrization of the Dirac gamma products can be expressed in terms of the
inverse of the Minkowskian metric ηµν in one of the following forms:

γ {µ1 · · · γ µ2k} = η{µ1µ2 · · ·ηµ2k−1µ2k} (even)
(B2)

γ {µ1 · · · γ µ2k−1} = γ {µ1ηµ2µ3 · · ·ηµ2k−2µ2k−1} (odd) k ∈ N.

Plugging (B2) into (B1) and taking care of the combinatorics, we found that the terms of the
density ωµ(N) belong to one of the following four categories:

(1) ∂µ1···µ2k−1

∂L(N)m

∂ψµµ1···µ2k−1

= (−1)kcN−2k�k−1∂µψ.

(2) ∂µ1···µ2k

∂L(N)m

∂ψµµ1···µ2k

= (−1)kicN−2k−1

2k + 1

(
�k∂µψγ µ + 2k�k−1∂µ∂σψγ

σ
)
.

(3) ∂µ1···µ2k

∂L(N)m

∂ψµνµ1 ···µ2k

= (−1)k+1cN−2k−2

2k + 1
(�kηµνψ + 2k�k−1∂µ∂νψ).

(4) ∂µ1···µ2k−1

∂L(N)m

∂ψµνµ1 ···µ2k−1

= (−1)kicN−2k−1

2k + 1

(
∂µ�k−1ψγ ν + ∂ν�k−1ψγµ

+ ηµν∂σ�k−1ψγ σ + 2(k − 1)∂µ∂ν∂σ�k−2ψγ σ
)
.

Now making use of parametrization (11), that is ψ =∑N
l=0 ψl , where

ψl(t, �x) =
∑
α=1,2

∫
R3

d3�k
(2π)3

ml

k0
l

[
aαl (k)u

α
l (k) e−iklx + bαl (k)v

α
l (k) eiklx

]
k0
l =

√
�k2 +m2
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remembering that the constants ck are defined in terms of the massesml and using the properties
of the spinors ul and vl detailed in appendix A it is straightforward, but slightly tedious, to
derive equation (13) for the symplectic form.

Appendix C. The underlying idea

The procedure developed in the main body of the paper for spinorial fields can be
straightforwardly extended to cover all linear models for which the field equations can be
derived from a variational principle of the form

SHD[φ] = 〈φ|(D +M1) · · · (D +MN)φ〉 (C1)

where Mi are ‘mass’ parameters (usually Mi = −mi when dealing with fermions, Mi = m2
i

when dealing with bosons), ordered by their subscript M1 < M2 < · · · < MN , 〈·|·〉 is a
pseudo-scalar product, and D a differential operator symmetric under 〈·|·〉, that is

〈φ1 | Dφ2〉 = 〈Dφ1 | φ2〉.
Generically, in the fermionic case D will be a first-order differential operator such as D = i/∂
and in the bosonic case a second-order differential operator such as D = δd for differential
forms or D = �

(
1
2P

(2) − P (s)) for HD-gravity [16].
Under this hypothesis, and through the lines presented in section 4, it is a trivial task to

define a correspondence between SHD[φ] and the action
N∑
a=1

N∏
b 	=a
(Mb −Ma)Sa[φa] (C2)

where

Sa[φa] := 〈φa | (D +Ma)φa〉.
This can be done by following the same steps as in the spinorial case. First, define a Legendre
transformation of the form (14)–(15) and then a linear redefinition in the form of (16)–(19) to
select the propagating DOF. Formally, the same formulae are valid in the general case with
the obvious identifications ψ � φ, ψ � 〈φ| and ml � −Ml .
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